Kids Learning Center

New Approach to Kids Education

Sea ipsum kasd eirmod kasd magna, est sea et diam ipsum est amet sed sit. Ipsum dolor no justo dolor et, lorem ut dolor erat dolore sed ipsum at ipsum nonumy amet. Clita lorem dolore sed stet et est justo dolore.

Learn More

Parabola Equation Opening Downwards In The First Quadrant:





According to the definition of parabola, distance from focus F to point S is equal to distance from point S to the point T on directrix

➔    |FS| = |ST|

➔    [FS]2 = [ST]2

➔    (x-h)2+(y-(k-p))2 = (y-(k+p))2

➔    x2+h2-2xh+y2-2yk+2yp+k2+p2-2kp-2y(k-p) = y2+k2+p2+2pk-2yk-2yp

➔    Cancelling the matching terms ➔    x2+h2-2xh+y2-2yk+2yp+k2+p2-2kp-2yk = y2+k2+p2+2pk-2yk-2yp

➔    x2+h2-2xh+2yp-2kp = 2kp-2yp

➔    x2+h2-2xh+2yp-2kp-2kp+2yp = 0

➔    x2+h2-2xh-4kp+4yp = 0

➔    (x-h)2+4p(y-k) = 0

➔    (x-h)2 = -4p(y-k)

When the vertex is at (0,0):

➔    h=0, k=0

➔    (x-h)2 = -4p(y-k)

Parabola equation becomes: x2 = -4py


Comparing the vertex form to the standard form :

➔    Standard form of parabola = a(x)2+b(x)+c

Comparing it with the vertex form gives the vertex as:

Distance from vertex to focus - let us call it "p".
a= -1 4p

b= h 2p

c= -h2 4p +k


Solved Example :

KidKinder

Labore dolor amet ipsum ea, erat sit ipsum duo eos. Volup amet ea dolor et magna dolor, elitr rebum duo est sed diam elitr. Stet elitr stet diam duo eos rebum ipsum diam ipsum elitr.

Get In Touch

Address

123 Street, New York, USA

Email

info@example.com

Phone

+012 345 67890

Newsletter

© Your Site Name. All Rights Reserved. Designed by HTML Codex